博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Dot Product
阅读量:5109 次
发布时间:2019-06-13

本文共 3128 字,大约阅读时间需要 10 分钟。

These are :

They can be multiplied using the "Dot Product" (also see ).

Calculating

You can calculate the Dot Product of two vectors this way:

a · b = |a| × |b| × cos(θ)

Where:

|a| is the magnitude (length) of vector a
|b| is the magnitude (length) of vector b
θ is the angle between a and b

So we multiply the length of a times the length of b, then multiply by the cosine of the angle between a and b

OR you can calculate it this way:

a · b = ax × bx + ay × by

So we multiply the x's, multiply the y's, then add.

Both methods work!

Example: Calculate the dot product of vectors a and b:

a · b = |a| × |b| × cos(θ)

a · b = 10 × 13 × cos(59.5°)

a · b = 10 × 13 × 0.5075...

a · b = 65.98... = 66 (rounded)

a · b = ax × bx + ay × by

a · b = -6 × 5 + 8 × 12

a · b = -30 + 96

a · b = 66

Both methods came up with the same result (after rounding)

Also note that we used minus 6 for ax (it is heading in the negative x-direction)

Note: you can use the to help you.

Why cos(θ) ?

OK, to multiply two vectors it makes sense to multiply their lengths together but only when they point in the same direction.

So we make one "point in the same direction" as the other by multiplying by cos(θ):

We take the component of a

that lies alongside b

Like shining a light to see

where the shadow lies

THEN we multiply !

It works exactly the same if we "projected" b alongside a then multiplied:

Because it doesn't matter which order we do the multiplication:

|a| × |b| × cos(θ) = |a| × cos(θ) × |b|

Right Angles

When two vectors are at right angles to each other the dot product is zero.

Example: calculate the Dot Product for:

a · b = |a| × |b| × cos(θ)

a · b = | a| × | b| × cos(90°)

a · b = | a| × | b| × 0

a · b = 0

a · b = ax × bx + ay × by

a · b = -12 × 12 + 16 × 9

a · b = -144 + 144

a · b = 0

This can be a handy way to find out if two vectors are at right angles.

Three or More Dimensions

This all works fine in 3 (or more) dimensions, too.

And can actually be very useful!

Example: Sam has measured the end-points of two poles, and wants to know the angle between them:

We have 3 dimensions, so don't forget the z-components:

a · b = ax × bx + ay × by + az × bz

a · b = 9 × 4 + 2 × 8 + 7 × 10

a · b = 36 + 16 + 70

a · b = 122

Now for the other formula:

a · b = |a| × |b| × cos(θ)

But what is |a| ? It is the magnitude, or length, of the vector a. We can use :

  • |a| = √(42 + 82 + 102)
  • |a| = √(16 + 64 + 100)
  • |a| = √180

Likewise for |b|:

  • |b| = √(92 + 22 + 72)
  • |b| = √(81 + 4 + 49)
  • |b| = √134

And we know from the calculation above that a · b = 122, so:

a · b = |a| × |b| × cos(θ)

122 = √180 × √134 × cos(θ)

cos(θ) = 122 / (√180 × √134)

cos(θ) = 0.7855...

θ = cos -1(0.7855...) = 38.2...°

Done!

I tried a calculation like that once, but worked all in angles and distances ... it was very hard, involved lots of trigonometry, and my brain hurt. The method above is much easier.

Cross Product

The Dot Product gives a scalar (ordinary number) answer, and is sometimes called the scalar product.

But there is also the which gives a vector as an answer, and is sometimes called the vector product.

转载于:https://www.cnblogs.com/McKean/p/6087669.html

你可能感兴趣的文章
秒杀9种排序算法(JavaScript版)
查看>>
Activiti入门 -- 环境搭建和核心API简介
查看>>
struts.convention.classes.reload配置为true,tomcat启动报错
查看>>
MySQL的并行复制多线程复制MTS(Multi-Threaded Slaves)
查看>>
好玩的-记最近玩的几个经典ipad ios游戏
查看>>
PyQt5--EventSender
查看>>
Sql Server 中由数字转换为指定长度的字符串
查看>>
Java 多态 虚方法
查看>>
Unity之fragment shader中如何获得视口空间中的坐标
查看>>
万能的SQLHelper帮助类
查看>>
tmux的简单快捷键
查看>>
[Swift]LeetCode922.按奇偶排序数组 II | Sort Array By Parity II
查看>>
Html5 离线页面缓存
查看>>
《绿色·精简·性感·迷你版》易语言,小到不可想象
查看>>
Android打包key密码丢失找回
查看>>
VC6.0调试技巧(一)(转)
查看>>
类库与框架,强类型与弱类型的闲聊
查看>>
webView添加头视图
查看>>
php match_model的简单使用
查看>>
在NT中直接访问物理内存
查看>>